

SHENZHEN FUDIANKANG ENERGY CO., LTD

Tel:86-13729889887 Fax:86-20-84550026

Web: www.fdkenergy.com Email: info@fdkenergy.com

DATA SHEET

DIESEL GENERATOR 1200KW MODEL#FDK-CG1200/H2 60HZ/1800RPM

General Features:

- All qualified generator sets are subjected to a comprehensive performance test which includes 50% load, 70% load, 100% load, 110% load and to check, verify that all control systems, alarm and shut-down protection.
- Equipped with battery charger and 24V high performance maintenance-free lead-acid starting batteries and connecting
- Stainless galvanized zinc plates with strong corrosion-proof.
- Vibration isolators between the engine/alternator and base frame.
- Equipped with industrial silencer and flexible exhaust hose.
- Designed to comply with ISO8528/GB2820.
- Powered by Cummins engine and coupled with Stamford alternator.
- Water jacket preheater, oil heater and double air cleaner, etc. are available.

FDK Diesel Generator Set Data

Genset Model	FDK-CG1200/H2			
Prime Power	1090KW/1360KVA			
Standby Power	1200KW/1500KVA			
Output Frequency / Rated speed	60Hz/1800rpm			
Rated Voltage	230V/400V			

Engine Make	Cummins ONAN		
Engine Model	KTA50-G3		
Alternator model	Stamford PI734A		
Control System	DSE7320		
Phase	Three		

- (1) Prime power: The rating is available for an unlimited of annual operating hours in variable load applications, in accordance with ISO8528-1.A 10% overload is available for a period of 1 hour within 12-hour period of operation, in accordance with ISO 3046-1.
- (2) Standby power: The rating is applicable for supplying emergency power in variable load applications for up to 200 hours per year in accordance with ISO8528-1. Overload is not allowed.
- (3) Rated voltage: available with customer requirement.

Engine Specifications (DETAILED in APPENDIX)

Engine Model	KTA50-G3			
Engine Manufacturer	Cummins			
	ORIGINAL INDIA			
Cylinder quantity	16			
Cylinder Arrangement	60° Vee			
Cycle	4			

Aspiration	Turbo-charged		
Bore x Stroke (mm x mm)	159×159		
Displacement	50.3L		
Compression Ratio	13.9:1		
Prime power / Speed (KW/RPM)	1300kw/1800		
Standby power/ Speed (KW/RPM)	1380kw/1800		

FDK reserves the right to change the specifications and designs without noice.

SHENZHEN FUDIANKANG ENERGY CO., LTD

Tel:86-13729889887 Fax:86-20-84550026

Web: www.fdkenergy.com	Email: info@fdkenergy.com
------------------------	---------------------------

Type Injection System	Cummins PT	Fuel Consumption at 100% load	203 at 1800rpm	
	Direct Injection	(g/KWh)		
Piston Speed	9.5m/s	Starter motor	24V	
Friction Energy Output	168kw	Low idle	725-775pm	
Total Lubrication System Capacity	177L	Coolant Capacity (L)	161	

Alternator Specifications

Alternator model	PI734A	Number of phase	3		
Alternator manufacturer	STAMFORD	Rated voltage	440V (Available with		
Exciter type	Single bearing, Brushless,		custom requirements)		
	Self-excited	Power factor	0.8		
Rated output prime power	ated output prime power 1525KVA		≤±1%		
Rated speed	1800 rpm	Insulation grade	Н		
Rated frequency	60Hz	Protection grade	IP23		

Alternator option: Leroy Somer, MECC, Marathon, Engga, Faraday

Control System DSE7320 (DETAILED in INSTRUCTION)

DSE7320 is an advanced control module based on micro-processor, containing all necessary functions for protection of the genset and the breaker control. It can monitor the mains supply, breaker control and automatically start the engine when the mains are abnormal. Accurately measure various operational parameters and display all values and alarms information on the LCD. In addition, the control module can automatically shut down the engine and indicate the engine failure.

FEATURES

- Microprocessor control, with high stability and credibility.
- Monitoring and measuring operational parameters of the mains supply and genset.
- Indicating operation status, fault conditions, all parameters and alarms.
- Multiple protections; multiple parameters display, like pressure, temp. etc.
- Manual, automatic and remote work mode selectable.
- Real time clock for time and date display, overall runtime display, 250 log entries.
- Overall power output display.
- Integral speed/frequency detecting, telling status of start, rated operation, overspeed etc.
- Communication with PC via RS485 OR RS232 interface, using MODBUS protocol.

Soundproof Enclosure Specification

FDK silent generator is designed by professional acoustic engineers based on years of experience. Now we can make the noise of the generator less than 80-85dB(A) at 1m, or 70-75dB(A) at 7m, 60-65dB(A) at 15m.

FEATURES

- Multi-way air intake and exhaust guarantee the power performance of the generator.
- Large-scale impedance combined type silencer effectively reduce noise of the generator.
- Internal high performance rubber damper and flexible materials reduce vibration.
- Base mounted fuel tank supports the generator running for 8 hours.

FDK reserves the right to change the specifications and designs without noice.

SHENZHEN FUDIANKANG ENERGY CO., LTD

Web: www.fdkenergy.com

Tel:86-13729889887 Fax:86-20-84550026

Email: info@fdkenergy.com

Optional

Generator set ATS Alternator Low environment Temp Water heater CHINT Open generator set Stamford Silent generator set Marathon Oil heater **SCHNEIDER** Trailer generator set Mecc Alte Battery heater ABB ABB MCCB circuit breaker Leroy Somer Farady Engga Fuel system Control system Voltage Synchronized system AMF function 415/240V 12hrs base tank **CHINT Cabinet** ATS control cabinet 400/230V SCHNEIDER Cabinet 24hrs base tank Dual wall base fuel tank DSE7320 380/220V DSE8610 Module

Dimension & Weight Open

Outside fuel tank

Overall Size:	4900×2150×2450
L×W×H (mm)	
Weight (kg)	10300

Soundproof Version

220/127V

200/115V

Overall Size:	7000×2300×2800
LxWxH (mm)	
Weight (kg)	12500

◻

COMAQ Module

DEIF Module

Sales Promises

- FDK provides a full line of brand new and high quality products. Each and every unit is strictly factory tested before shipment.
- Quality warranty is according to our standard conditions: 12 months from BL date or 1000 running hours, whichever comes
- Service and parts are available from FDK or distributors in your location.

DSE7510

GU620A

FDK guarantee use BRAND NEW & GENUINE MACHINE.

Displacement: 50.3 litre (3067 in³)

CUMMINS ENGINE COMPANY, INC

Columbus, Indiana 47201

ENGINE PERFORMANCE CURVE

Basic Engine Model: KTA50-G3

CPL: 2227

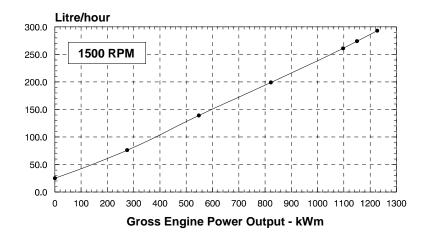
Curve Number: FR-6250

Date:

12Jan01

Page No.

Engine Critical Parts List:


Bore: 159 mm (6.25 in.) Stroke: 159 mm (6.25 in.)

No. of Cylinders : 16 Aspiration : Turbocharged and Aftercooled

Engine Speed	Engine Speed Standby Power Rating		Prime Power Rating				Continuous Power	
Engine Speed			Limited Time		Unlimited Time		Rating	
RPM	kWm	ВНР	kWm	ВНР	kWm	ВНР	kWm	ВНР
1500	1227	1645	1150	1541	1097	1470	900	1206
1800	1380	1850	1300	1742	1220	1635	1000	1340

Engine Performance Data @ 1500 RPM

OUT	PUT PO	WER	FUEL CONSUMPTION				
%	% kWm BHP		kg/ kWm∙h	lb/ BHP∙h	litre/ hour	U.S. Gal/ hour	
STANE	BY POW	/ER				•	
100	1227	1645	0.203	0.334	293	77.4	
PRIME	LIMITI	ED TIME	RUNNING	POWER			
100	1150	1541	0.202	0.333	274	72.3	
PRIME	UNLII	MITED TI	ME RUNNI	NG POWE	₹		
100	1097	1470	0.202	0.333	261	69.0	
75	822	1102	0.206	0.338	199	52.5	
50	548	735	0.216	0.355	139	36.6	
25	275	368	0.234	0.385	76	20.0	
CONTI	NUOUS	POWER					
100	900	1206	0.204	0.336	216	57.1	

CONVERSIONS:

(Litres = U.S. Gal x 3.785)

 $(kWm = BHP \times 0.746)$

 $(U.S. Gal = Litres \times 0.2642)$

(BHP = Engine kWm x 1.34)

These guidelines have been formulated to ensure proper application of generator drive engines in A.C. generator set installations. Generator drive engines are not designed for and shall not be used in variable speed D.C. generator set applications.

STANDBY POWER RATING

Applicable for supplying emergency power for the duration of the utility power outage. No overload capability is available for this rating. Under no condition is an engine allowed to operate in parallel with the public utility at the Standby Power rating. This rating should be applied where reliable utility power is available. A Standby rated engine should be sized for a maximum of an 80% average load factor and 200 hours of operation per year. This includes less than 25 hours per year at the Standby Power rating. Standby ratings should never be applied except in true emergency power outages. Negotiated power outages contracted with a utility company are not considered an emergency.

PRIME POWER RATING

Applicable for supplying electric power in lieu of commercially purchased power. Prime Power applications must be in the form of one of the following two categories:

UNLIMITED TIME RUNNING PRIME POWER

Prime Power is available for an unlimited number of hours per year in a variable load application. Variable load should not exceed a 70% average of the Prime Power rating during any operating period of 250 hours. The total operating time at 100% Prime Power shall not exceed 500 hours per year. A 10% overload capability is available for a period of 1 hour within a 12-hour period of operation. Total operating time at the 10% overload power shall not exceed 25 hours per year.

LIMITED TIME RUNNING PRIME POWER

Limited Time Prime Power is available for a limited number of hours in a non-variable load application. It is intended for use in situations where power outages are contracted, such as in utility power curtailment. Engines may be operated in parallel to the public utility up to 750 hours per year at power levels never to exceed the Prime Power rating. The customer should be aware, however, that the life of any engine will be reduced by this constant high load operation. Any operation exceeding 750 hours per year at the Limited Time Prime Power rating should use the Continuous Power rating.

CONTINUOUS POWER RATING

Applicable for supplying utility power at a constant 100% load for an unlimited number of hours per year. No overload capability is available for this rating.

Data shown above represent gross engine performance capabilities obtained and corrected in accordance with ISO-3046 conditions of 100 kPa (29.5 in Hg) barometric pressure [110 m (361 ft) altitude], 25 °C (77 °F) air inlet temperature, and relative humidity of 30% with No. 2 diesel or a fuel corresponding to ASTM D2. See reverse side for application rating guidelines.

The fuel consumption data is based on No. 2 diesel fuel weight at 0.85 kg/litre (7.1 lbs/U.S. gal).

Power output curves are based on the engine operating with fuel system, water pump and lubricating oil pump; not included are battery charging alternator, fan, optional equipment and driven components.

CUMMINS ENGINE COMPANY, INC

Columbus, Indiana 47201

ENGINE PERFORMANCE CURVE

Basic Engine Model: KTA50-G3 Curve Number: FR-6250

Page No.

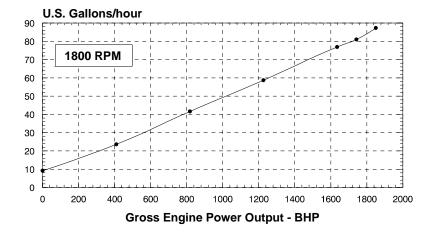
Engine Critical Parts List:

CPL: 2227

Date: **12Jan01**

Displacement: 50.3 litre (3067 in³)

Bore: 159 mm (6.25 in.) Stroke: 159 mm (6.25 in.)


No. of Cylinders: 16

Aspiration: Turbocharged and Aftercooled

Engine Speed Standby		y Power		Prime Power Rating				Continuous Power	
Engine Speed	Engine Speed Rating		Limited Time Unlimited Time		Rating				
RPM	kWm	ВНР	kWm	ВНР	kWm	ВНР	kWm	ВНР	
1500	1227	1645	1150	1541	1097	1470	900	1206	
1800	1380	1850	1300	1742	1220	1635	1000	1340	

Engine Performance Data @ 1800 RPM

OUT	PUT PO	VER	FUEL CONSUMPTION				
%	kWm	ВНР	kg/ kWm∙h	•		U.S. Gal/ hour	
STANDBY POWER							
100	1380	1850	0.204	0.335	330	87.3	
PRIME LIMITED TIME RUNNING POWER							
100	1300	1742	0.203	0.334	310	81.0	
PRIME UNLIMITED TIME RUNNING POWER							
100	1220	1635	0.203	0.334	291	76.9	
75	915	1226	0.207	0.340	222	58.7	
50	610	818	0.220	0.361	157	41.6	
25	305	409	0.249	0.410 89		23.6	
CONTINUOUS POWER							
100	1000	1340	0.206	0.338	242	63.8	

CONVERSIONS:

(Litres = U.S. Gal x 3.785)

 $(kWm = BHP \times 0.746)$

 $(U.S. Gal = Litres \times 0.2642)$

(BHP = Engine kWm x 1.34)

These guidelines have been formulated to ensure proper application of generator drive engines in A.C. generator set installations. Generator drive engines are not designed for and shall not be used in variable speed D.C. generator set applications.

STANDBY POWER RATING

Applicable for supplying emergency power for the duration of the utility power outage. No overload capability is available for this rating. Under no condition is an engine allowed to operate in parallel with the public utility at the Standby Power rating. This rating should be applied where reliable utility power is available. A Standby rated engine should be sized for a maximum of an 80% average load factor and 200 hours of operation per year. This includes less than 25 hours per year at the Standby Power rating. Standby ratings should never be applied except in true emergency power outages. Negotiated power outages contracted with a utility company are not considered an emergency.

PRIME POWER RATING

Applicable for supplying electric power in lieu of commercially purchased power. Prime Power applications must be in the form of one of the following two categories:

UNLIMITED TIME RUNNING PRIME POWER

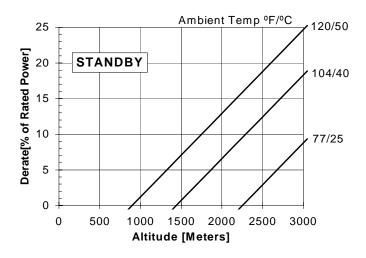
Prime Power is available for an unlimited number of hours per year in a variable load application. Variable load should not exceed a 70% average of the Prime Power rating during any operating period of 250 hours. The total operating time at 100% Prime Power shall not exceed 500 hours per year. A 10% overload capability is available for a period of 1 hour within a 12-hour period of operation. Total operating time at the 10% overload power shall not exceed 25 hours per year.

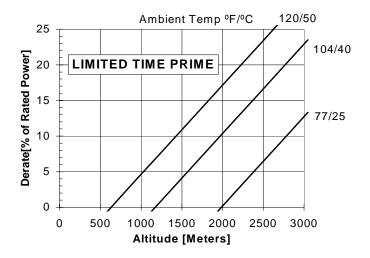
LIMITED TIME RUNNING PRIME POWER

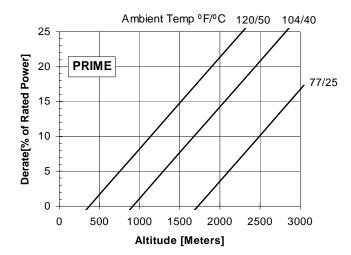
Limited Time Prime Power is available for a limited number of hours in a non-variable load application. It is intended for use in situations where power outages are contracted, such as in utility power curtailment. Engines may be operated in parallel to the public utility up to 750 hours per year at power levels never to exceed the Prime Power rating. The customer should be aware, however, that the life of any engine will be reduced by this constant high load operation. Any operation exceeding 750 hours per year at the Limited Time Prime Power rating should use the Continuous Power rating.

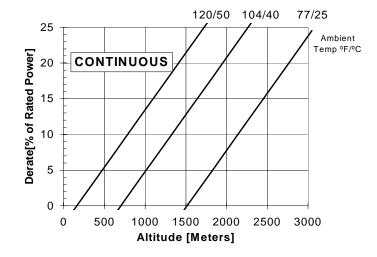
CONTINUOUS POWER RATING

Applicable for supplying utility power at a constant 100% load for an unlimited number of hours per year. No overload capability is available for this rating.


Data shown above represent gross engine performance capabilities obtained and corrected in accordance with ISO-3046 conditions of 100 kPa (29.5 in Hg) barometric pressure [110 m (361 ft.) altitude], 25 °C (77 °F) air inlet temperature, and relative humidity of 30% with No. 2 diesel or a fuel corresponding to ASTM D2. See reverse side for application rating guidelines.


The fuel consumption data is based on No. 2 diesel fuel weight at 0.85 kg/litre (7.1 lbs/U.S. gal).


Power output curves are based on the engine operating with fuel system, water pump and lubricating oil pump; not included are battery charging alternator, fan, optional equipment and driven components.


KTA50-G3 Derate Curves @ 1500 RPM

CURVE NO: FR-6250 **DATE**: 12Jan01

NOTE: Derates shown are based on 15 in H₂0 air intake restriction and 2 in Hg exhaust back pressure.

For sustained operation above these conditions, derate by an additional 5% per 1000 ft (300 m) and 9% per 18° F (10° C).

Reference Standards:

BS-5514 and DIN-6271 standards are based on ISO-3046.

Cummins Engine Company, Inc. Engine Data Sheet

DATA SHEET: DS-6250 DATE: 12Jan01 PERFORMANCE CURVE: FR-6250 ENGINE MODEL: KTA50-G3 **CONFIGURATION NUMBER:** D283021DX02

INSTALLATION DIAGRAM • Fan to Flywheel : 3626420 **CPL NUMBER**• Engine Critical Parts List : 2227

Type	4-Cycle; 60° Ve		
Aspiration	Turbocharged		ed
Bore x Stroke in x in (mm x mm)	6.25 x 6.25 (15	9 x 159)	
Displacement —— in ³ (liter)	3067 (50.3)		
Compression Ratio	13.9 : 1		
Dry Weight			
Fan to Flywheel Engine — Ib (kg)	11820	(5360)	
Heat Exchanger Cooled Engine — Ib (kg)	12260	(5560)	
Wet Weight		, ,	
Fan to Flywheel Engine — lb (kg)	12485	(5662)	
Heat Exchanger Cooled Engine — Ib (kg)	13085	(5934)	
Moment of Inertia of Rotating Components			
• with FW 6009 Flywheel	301	(12.7)	
• with FW 6017 Flywheel	515	(21.7)	
Center of Gravity from Rear Face of Flywheel Housing (FH 6024)	47.5	(1206)	
		, ,	
Center of Gravity Above Crankshaft Centerline	11.0	(279)	
Maximum Static Loading at Rear Main Bearing — Ib (kg)	2000	(908)	
NGINE MOUNTING			
Maximum Bending Moment at Rear Face of Block — lb • ft (N • m)	4500	(6100)	
XHAUST SYSTEM			
Maximum Back Pressure @ Standby Power Rating— in Hg (mm Hg)	2	(51)	
IR INDUCTION SYSTEM			
Maximum Intake Air Restriction			
• with Dirty Filter Element @ Standby Power Rating — in H ₂ O (mm H ₂ O)	25	(635)	
• with Clean Filter Element @ Standby Power Rating — in H ₂ O (mm H ₂ O)	15	(381)	
OOLING SYSTEM			
Coolant Capacity — Engine Only — US gal (liter)	42.5	(161)	
Maximum Coolant Friction Head External to Engine — 1800 rpm— psi (kPa)	15	(103)	
— 1500 rpm — psi (kPa)	10	(69)	
Maximum Static Head of Coolant Above Engine Crank Centerline—ft (m)	60	(18.3)	
· · · · · · · · · · · · · · · · · · ·		. ` '	
Standard Thermostat (Modulating) Range	180 - 200	(82 - 93)	
Minimum Pressure Cap (For Cooling Systems with less than 2 m [6 ft.] Static Head) — psi (kPa)	14	(96)	
Maximum Top Tank Temperature for Standby / Prime Power	220 / 212	(104 / 100)	
UBRICATION SYSTEM			
Oil Pressure @ Idle Speed—psi (kPa)	20	(138)	
@ Governed Speed — psi (kPa)	50 - 70	(345 - 483)	
Maximum Oil Temperature — °F (°C)	250	(121)	
Oil Capacity with OP 6024 Oil Pan : High - Low — US gal (liter)	40 - 32	(151 - 121)	
Total System Capacity (Including Bypass Filter)	46.7	(177)	
Angularity of OP 6024 Oil Pan — Front Down	70.7	30°	
		30°	
— Front Up			
— Side to Side		30°	
UEL SYSTEM			
Type Injection System	l	Direct Injection	Cummi
Maximum Restriction at PT Fuel Injection Pump — with Clean Fuel Filter		-	(102)
— with Dirty Fuel Filter—			(203)
			, ,
Maximum Allowable Head on Injector Return Line (Consisting of Friction Head and Static Head) —	in Ha (mm Ha)	6.5	(165)

ELECTRICAL SYSTEM

Cranking Motor (Heavy Duty, Positive Engagement)	24	
Battery Charging System, Negative Ground — ampere	35	
Maximum Allowable Resistance of Cranking Circuit — ohm	0.002	
Minimum Recommended Battery Capacity		
• Cold Soak @ 50 °F (10 °C) and Above	1280	
• Cold Soak @ 32 °F to 50 °F (0 °C to 10 °C)	1800	
• Cold Soak @ 0 °F to 32 °F (-18 °C to 0 °C)	1800	
COLD START CAPABILITY		

C

Minimum Ambient Temperature for Aided (with Coolant Heater) Cold Start within 10 seconds	50	(10)
Minimum Ambient Temperature for Unaided Cold Start	45	(7)

PERFORMANCE DATA

All data is based on:

- · Engine operating with fuel system, water pump, lubricating oil pump, air cleaner and exhaust silencer; not included are battery charging alternator, fan, and optional driven components.
- Engine operating with fuel corresponding to grade No. 2-D per ASTM D975.
- ISO 3046, Part 1, Standard Reference Conditions of:

Barometric Pressure : 100 kPa (29.53 in Hg) Air Temperature : 25 °C (77 °F)

Altitude : 110 m (361 ft) Relative Humidity

+/- 0.25 Estimated Free Field Sound Pressure Level of a Typical Generator Set; 94.6 / 92.4 Exhaust Noise at 1 m Horizontally from Centerline of Exhaust Pipe Outlet Upwards at 45° — 1800 / 1500 rpm..... dBA 126 / 125

Governed Engine Speedrpm
Engine Idle Speed — rpm
Gross Engine Power Output BHP (kW _m)
Brake Mean Effective Pressure — psi (kPa)
Piston Speed—ft / min (m / s)
Friction Horsepower — HP (kW _m)
Engine Water Flow at Stated Friction Head External to Engine:
• 4 psi Friction Head — US gpm (liter / s)
Maximum Friction Head — US gpm (liter / s)

Engine Data with Dry Type Exhaust Manifold Intake Air Flow — cfm (liter / s) Exhaust Gas Temperature.....- °F (°C) Exhaust Gas Flow— cfm (liter / s) Air to Fuel Ratio— air : fuel Radiated Heat to Ambient BTU / min (kW_m) $\label{eq:bounds} \mbox{Heat Rejection to Coolant} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection to Exhaust.....} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection to Exhaust....} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection to Exhaust...} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection to Exhaust...} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection to Exhaust...} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection to Exhaust...} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection to Exhaust...} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection to Exhaust...} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection to Exhaust...} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection to Exhaust...} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection to Exhaust...} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection to Exhaust...} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection to Exhaust...} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection to Exhaust...} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection to Exhaust...} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection to Exhaust...} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection to Exhaust...} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection to Exhaust...} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection to Exhaust...} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection to Exhaust...} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection to Exhaust...} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection to Exhaust...} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection to Exhaust...} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection to Exhaust...} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection to Exhaust...} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection to Exhaust...} = \mbox{BTU / min } (\mbox{kW}_{m}) \\ \mbox{Heat Rejection$

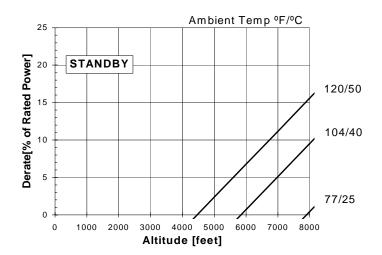
STANDBY POWER 60 hz 50 hz				PRIME POWER UNLIMITED TIME 60 hz 50 hz			
1	1800		1500		1800		500
725	5 - 775	725 - 775		725 - 775		725 - 775	
1850	(1380)	1645	(1227)	1635	(1220)	1470	(1097)
265	(1827)	283	(1951)	235	(1620)	253	(1744)
1875	(9.5)	1562	(7.9)	1875	(9.5)	1562	(7.9)
225	(168)	155	(116)	225	(168)	155	(116)
535	(33.7)	440	(27.8)	535	(33.7)	440	(27.8)
470	(29.6)	400	(25.2)	470	(29.6)	400	(25.2)
3900	(1840)	3700	(1746)	3700	(1746)	3400	(1605)
887	(475)	977	(525)	860	(460)	968	(520)
9100	(4295)	8500	(4011)	8400	(3964)	7900	(3728)
26.5 · 1		27.0 : 1		27.5 : 1		28.0 : 1	
10000	(176)	8500	(150)	8500	(150)	7300	(130)
51000	(900)	44000	(775)	44000	(775)	38500	(680)
53000	(935)	48000	(845)	47000	(830)	43000	(760)
							-

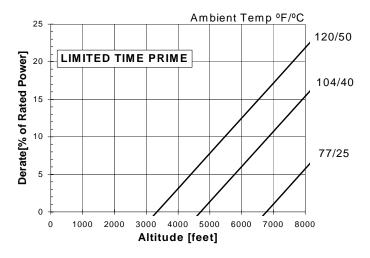
N.A. - Data is Not Available

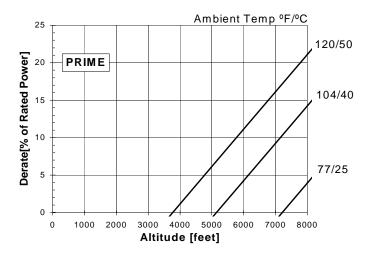
N/A - Not Applicable to this Engine

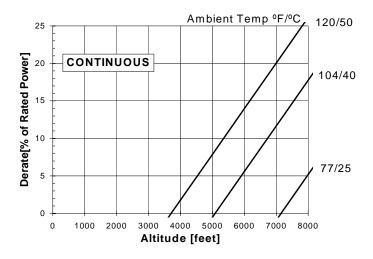
TBD - To Be Determined

ENGINE MODEL: KTA50-G3


DATA SHEET: DS-6250 **DATE**: 12Jan01 CURVE NO.: FR-6250


CUMMINS ENGINE COMPANY, INC.


Columbus, Indiana 47202-3005


KTA50-G3 Derate Curves @ 1800 RPM

CURVE NO: FR-6250 **DATE**: 12Jan01

NOTE: Derates shown are based on 15 in H₂0 air intake restriction and 2 in Hg exhaust back pressure.

For sustained operation above these conditions, derate by an additional 6% per 1000 ft (300 m) and 8% per 18° F (10° C).